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Abstract
Within the mode-coupling theory for the evolution of structural relaxation in
glass-forming systems, it is shown that the correlation functions for density
fluctuations for states at A3- and A4-glass-transition singularities can be
presented as an asymptotic series in increasing inverse powers of the logarithm
of the time t: φ(t) − f ∝ ∑

i gi(x), where gn(x) = pn(ln x)/xn with pn

denoting some polynomial and x = ln(t/t0). The results are demonstrated for
schematic models describing the system by solely one or two correlators and
also for a colloid model with a square-well-interaction potential.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Upon compressing or cooling glass-forming liquids, there evolves a peculiar relaxation scenario
called glassy dynamics. It is characterized by control-parameter sensitive correlation functions
or spectra which are stretched over large intervals of time t or frequency ω, respectively.
The so-called mode-coupling theory (MCT) of ideal glass transition has been proposed [1]
as a mathematical model for glassy dynamics. The basic version of that theory describes
the system by M correlation functions φq(t), q = 1, 2, . . . ,M , which have the meaning of
canonically defined auto-correlators of density fluctuations for wavevector moduli q chosen
from a grid of M values. The theory deals with a closed set of coupled nonlinear equations
of motion for the φq(t). The coupling coefficients in these equations are determined by the
equilibrium structure factors, which are assumed to be known smooth functions of control
parameters like temperature T or density ρ. The solution of the MCT equations describes a
transition from an ergodic liquid state to a non-ergodic glass state if the control parameters
pass critical values Tc or ρc, respectively. This transition is accompanied by the appearance of
a dynamical scenario, whose qualitative features can be understood by asymptotic solution
of the equations for long times and control parameters close to the critical values. The
asymptotic formulae establish the universal features of the glassy dynamics described by MCT.
On the basis of this understanding, one can construct schematic models. These are based on
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equations of motion which have the same general form as those derived within the microscopic
theory of liquids, but use the number M of correlators and the coupling coefficients as model
parameters. Thereby, one gets simplified models whose results can be used for the analysis of
data [2].

The ideal liquid–glass transition described by MCT is a fold bifurcation exhibited by the
equations of motion. One can show that all singularities that are generically possible are of
the cuspoid type [3, 4]. Using Arnol’d’s notation [5], an Al is a bifurcation which is equivalent
to that for the roots of a real polynomial of degree l. Simple schematic models using only
a single correlator also exhibit, in addition to the fold singularity, the cusp singularity A3

and the swallowtail singularity A4 [2]. The bifurcation dynamics near a higher-order glass-
transition singularity Al, l � 3, is utterly different from the one near the liquid–glass-transition
singularity of type A2. A major new feature is the appearance of logarithmic decay yielding to
a much stronger stretching than known for the A2-scenario [6]. The result for the correlators
of M = 1 models has been worked out in a certain leading-order multiple-scaling-law limit
[7]. These formulae have been used to fit dielectric-loss data of glassy polymer melts [8–11],
thereby providing some hint that the MCT for higher-order singularities might be of relevance
for understanding glassy dynamics.

Let us consider a system of spherical particles interacting via a steep repulsion potential
characterized by a diameter parameter d , which is complemented by an attractive potential.
The latter shall be characterized by an extension length � and an attraction-potential depth
u0. Such a system is specified conveniently by three control parameters: the packing fraction
ϕ = ρπd3/6, the dimensionless attraction strength � = u0/(kBT ) or the dimensionless
effective temperature θ = 1/�, and the relative attraction width δ = �/d . If δ is sufficiently
large, this potential is a caricature of a van der Waals interaction. One gets a decreasing �c-
versus-ϕc line of liquid–glass transitions in the �–ϕ plane of the thermodynamic states similar
to what was first calculated within MCT for Lennard-Jones systems [12]. For � = 0, the
mentioned line terminates at the critical packing fraction ϕc

HSS for the vitrification of the hard-
sphere system. The decrease of ϕc with increasing �c expresses the intuitive fact that cooling
stabilizes the glass state. If δ is sufficiently small, however, there appear two new phenomena.
First, for small �, the �c-versus-ϕc line increases. Cooling stabilizes the liquid because bond
formation creates inhomogeneities which favour fluidity. The new liquid state for ϕ > ϕc

HSS
exhibits a reentry phenomenon. Glassification occurs not only by increasing�, i.e., by cooling,
but also by decreasing �, i.e., by heating. Second, the �c-versus-ϕc line can consist of two
branches that form a corner. The low-�-branch is terminated by the high-�-branch. The
latter continues into the glass state as a glass–glass-transition line, which has an A3-singularity
as its endpoint. These two phenomena have been found by using Baxter’s model for the
structure factor as input to the MCT equations [13, 14]. In these calculations, the wavevector
cutoff qmax used in the MCT model defines the range parameter δ = π/(qmaxd). The generic
possibility for a transition from small-δ states with A3-singularity to large-δ states without
A3-singularity is the appearance of an A4-singularity for some critical value δ∗. Since the Al

bifurcations deal with topological singularities, the indicated scenarios are robust, i.e., they
occur for all potentials of the kind specified above. The A4-singularity was identified first for
the square-well system (SWS), i.e., for a system where a hard-core repulsion is complemented
by a shell of constant attraction strength u0. Here, δ∗ ≈ 0.04 was calculated [15]. The
neighbourhood of the A4 was analysed for some other potentials with the conclusion that there
are no qualitative differences between results referring to different shapes of the potential or
to different approximation schemes for the structure factor [16].

The above-described systems with short-ranged attraction can be prepared as colloidal
suspensions. The liquid–glass-transition lines can be identified by analysing the nucleation
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processes. Light-scattering experiments can provide the density-correlation functions φq(t).
Such studies have identified the existence of liquid states for ϕ > ϕc

HSS and the reentry
phenomenon [17–19]. Molecular-dynamics simulation studies can determine the mean-
squared displacement and the diffusivities with good accuracy. These quantities exhibit drastic
precursors of the liquid–glass transition. Several simulation studies [18, 20–22] have confirmed
the predictions on the reentry phenomenon. Near the corner formed by the large-� and small-
� transition lines, there should occur an almost logarithmic decay of the density correlations
φq(t), which is followed by a von Schweidler-law decay as the beginning of an α-relaxation
process [13, 15]. Such a scenario was first reported for micellar solutions [23]. This signature
of the dynamics for ϕ > ϕc

HSS states was also detected for colloidal suspensions with depletion
attraction [19].

In order to identify a higher-order singularity in data from experiment or from molecular-
dynamics simulation, one has to identify the features of the correlators φq(t) which are
characteristic for these singularities. The general theory of the logarithmic decay laws caused
by an Al for l � 3 has been developed, and the relevant general scenarios have been illustrated
for schematic models [24, 25]. The specific implications of the general theory for the SWS,
in particular the change of the features with changes of the wavenumber and the peculiarities
expected for the mean-squared displacement, have been worked out as well [26, 27]. Simulation
data for the tagged-particle-density correlators as a function of the wavevector q [28] provide
a first hint that the predicted logarithmic decay processes for ϕ > ϕc

HSS states near an A3-
singularity are present. Major progress was reported recently for simulation studies for
two states of a binary SWS [29]. The logarithmic decay and its expected deformation with
wavenumber changes has been detected convincingly. The identified amplitudes agree semi-
quantitatively with the calculated ones [26]. In addition, the mean-squared displacement
exhibits the expected control-parameter dependent power-law behaviour. These findings
provide very strong arguments for the existence of a higher-order glass-transition singularity.
One concludes that the cited MCT results on simple systems with short-ranged attraction
reproduce some subtle features of glassy dynamics so that further studies of these systems
within that theory seem worthwhile.

If one shifts the control parameters towards those specifying a higher-order singularity,
the time interval for logarithmic decay expands. But, simultaneously, the beginning of the time
interval also shifts to larger values. Consequently, there opens a time interval of increasing
length between the end of the transient and the beginning of the logarithmic decay. Within this
interval, the correlators are close to the critical ones φc

q(t), i.e., to the correlators calculated for
the control parameters at the singularity. It should be expected that these critical correlators
will be detected in future data from experiments and from simulation studies. It was shown for
one-component schematic models that the critical correlators approach their long-time limit
proportional to 1/ lnm(t/t0), where m = 2/(l − 2) for an Al [7]. In the following, these
results shall be extended in two directions. First, the critical correlators shall be expanded in
an asymptotic series so that an estimate of the range of validity of various asymptotic formulae
is possible. Second, the φc

q(t) shall be calculated for the general theory so that a discussion of
the q-dependent corrections of the leading asymptotic formulae is possible for an A3- and an
A4-singularity.

The paper is organized as follows. In section 2, the general starting equations for an
asymptotic discussion of critical relaxations are compiled. Then, in sections 3 and 4, the
asymptotic expansion is carried out for one-component models for states near an A3- and
A4-singularity, respectively. The results will be demonstrated quantitatively for schematic
models. Section 5 shows how the theory for φc

q(t) for an A3 can be reduced to the theory of
one-component models. The results are demonstrated for a two-component schematic model
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and for the SWS. The analogous results for an A4-singularity are presented in section 6. A
summary is formulated in section 7.

2. General equations

2.1. Equations for structural relaxation at glass-transition singularities

Within the basic version of the mode-coupling theory for the evolution of glassy relaxation
(MCT), the system’s dynamics is described by M correlatorsφq(t), q = 1, . . . ,M . The theory
uses the exact Zwanzig–Mori equations of motion. These are specified by M characteristic
frequencies �q > 0 and M fluctuating-force kernels Mq(t). The latter are decomposed
into regular terms M reg

q (t) describing normal-liquid effects and in mode-coupling kernels
mq(t). The essential step in the derivation of the theory is the application of Kawasaki’s
factorization approximation to express the kernels mq(t) as absolutely monotone functionsFq

of the correlators. These functions depend smoothly on a vector V of control parameters like
density and temperature,

mq(t) = Fq[V, φk(t)]. (1)

Vector V specifies the equilibrium structure functions of the system. Using Laplace transforms
of functions of time, say F(t), to functions defined in the upper plane of complex frequencies
z, F(z) = i

∫ ∞
0 dt exp(izt)F(t), the equations of motion read φq(z) = −1/{z − �2

q[z +
M reg

q (z)+�2
qmq(z)]} [2]. Glassy dynamics is characterized by long-time decay processes that

lead to large small-frequency contributions to mq(z). These small-z contributions to mq(z)
dominate over z + M reg

q (z). Therefore, glassy dynamics is described by the simplified equation
φq(z) = −1/[z − 1/mq(z)] [30]. Equivalently, there holds φq(z)/[1 − zφq(z)] = mq(z). It
will be more convenient to modify the Laplace transform to another invertible mappingS from
the time domain to the domain of complex frequencies according to

S[F(t)](z) = (−iz)
∫ ∞

0
dt exp(izt)F(t). (2)

Using this notation, the MCT equations for the small-frequency dynamics read

S[φq(t)](z)/{1 − S[φq(t)](z)} = S [Fq [V, φk(t)]
]
(z). (3)

Since Fq is determined completely by the equilibrium structure functions, the dynamics
obtained from equations (1) and (3) is referred to as structural relaxation. These equations are
scale invariant: if φq(t) is a solution, the same is true for φx

q (t) = φq(xt) for all x > 0. The
scale for the dynamics is determined by the transient motion. The latter is governed by �q

and M reg
q (t). Since these quantities do not enter equation (3), the solutions of equations (1)

and (3) are fixed only up to an overall timescale [30]. In the following, this timescale will be
denoted by t0.

A glass state is characterized by non-vanishing long-time limits of the correlators:
limt→∞ φq(t) = fq , 0 < fq < 1. Equivalently, one gets limz→0 S[φq(t)](z) = fq . Hence,
the zero-frequency limit of equation (3) yields fq/(1 − fq) = Fq[V, fk], q = 1, 2, . . . ,M .
This is a set of M implicit equations to be obeyed by the M numbers fq [1]. If the Jacobian of
these equations is invertible, the solutions vary smoothly with changes of V. If the Jacobian
is singular for some state Vc with fq = f c

q , fq exhibits a singularity as a function of V for
V tending towards Vc. Therefore, such a state Vc is called a glass-transition singularity. The
solution for the correlators for V = Vc is referred to as a critical correlator φc

q(t). Let us

introduce the functions φ̂q(t) by

φc
q(t) = f c

q + (1 − f c
q )φ̂q(t) (4)
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obeying limt→∞ φ̂q(t) = 0. In the following, φ̂q(t) and S[φ̂q(t)](z) shall be used as
small quantities for an asymptotic expansion of φc

q(t) for large times and small frequencies.
Introducing the coefficients

A(n)cqk1 ···kn
= 1

n!
(1 − f c

q ){∂nFq[Vc, f c
k ]/∂ fk1 · · · ∂ fkn }(1 − f c

k1
) · · · (1 − f c

kn
), (5)

equation (3) can be rewritten as the set of equations of motion for the φ̂q(t) [2]:

[δqk − A(1)cqk ]S[φ̂k(t)](z) = Jq(z). (6)

Here, Jq(z) = ∑
n�2 J (n)q (z) with the nth order expansion term given by

J (n)q (z) = A(n)cqk1···kn
S[φ̂k1(t) · · · φ̂kn (t)](z)− S[φ̂q(t)]

n(z). (7)

In equations (6) and (7) and in all the following equations, summation over pairs of equal labels
k is implied. The M × M matrix [δqk − A(1)cqk ] is the Jacobian mentioned above. Therefore, a

singularity is characterized by matrix A(1)cqk to have an eigenvalue unity. It is a subtle property
of the MCT equations that this eigenvalue is non-degenerate and that all other eigenvalues of
A(1)cqk have a modulus smaller than unity. The left and right eigenvectors shall be denoted by
a∗

q and aq, q = 1, . . . ,M , respectively:

a∗
k A(1)ckq = a∗

q , A(1)cqk ak = aq . (8)

Generically, one can require aq � 0, a∗
q � 0 for q = 1, . . . ,M . To fix the eigenvectors

uniquely, two normalization conditions can be imposed:
∑

q a∗
q aq = 1,

∑
q a∗

q aqaq = 1 [2, 3].
Because of the non-degeneracy mentioned, the singularity is topologically equivalent to

that of the zeros of a real polynomial of degree l, l = 2, 3, . . .. It is a bifurcation of type Al [5].
The singularity can be characterized by a sequence of real coefficients µ2, µ3, . . .. An Al is
specified by µn = 0 for n < l and µl �= 0. The simplest of these numbers reads

µ2 = 1 −
∑

q

a∗
q A(2)cqk1k2

ak1 ak2 . (9)

For an A2-glass-transition singularity, µ2 determines the so-called critical exponent a, 0 <
a � 1/2. In this case, the critical correlator can be asymptotically expanded as a power series:
φ̂q(t) = aq(t0/t)a +a′

q(t0/t)2a + · · ·. If the A2 singularity approaches a higher-order singularity
Al, l � 3, the exponent a approaches zero and the cited asymptotic expansion breaks down [2].
It is the goal of this paper to derive a long-time expansion of the critical correlator at A3- and
A4-singularities. Equivalently, it is the aim to solve asymptotically equations (6) and (7) for
φ̂q(t) for states Vc with

µ2 = 0, µ3 �= 0 (10a)

for an A3-singularity denoted by V = V◦ and

µ2 = µ3 = 0, µ4 �= 0 (10b)

for an A4-singularity denoted by V = V∗.

2.2. Expansions of slowly-varying functions

The derivations in this paper shall be based on an extension of the Tauberian theorem for
slowly-varying functions, which has been introduced in [7]. A function C(t) is called of slow
variation for long times if limT →∞ C(tT )/C(T ) = 1 for all t > 0. This is equivalent to
γ (z) = S[C(t)](z) being slowly varying for small frequencies: limT →∞ γ (z/T )/γ (i/T ) =
1. In addition, the Tauberian theorem states that γ (z) is asymptotically equal to
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G(i/z) : limz→0 γ (z)/G(i/z) = 1 [31]. Typical examples for functions of slow variation
are pm(ln(ln t))/ lnm(t), where m = 1, 2, . . . and pm denotes some polynomial. The critical
correlator φc

q(t) shall be expressed as sum of such functions. Let us introduce the notations

G(t) = g(x), x = ln(t/t0), y = ln(i/zt0), (11a)

gm(x) = pm(x)/xm, pm(x) =
l0∑

l=0

cm,l x
l . (11b)

gm+1(x) is asymptotically negligible compared to gm(x): limx→∞ gm+1(x)/gm(x) = 0. For
later convenience, let us write f (x) = O(1/xm) if f (x)xm is bounded for large x by some
polynomial of ln x . Denoting derivatives by dng(x)/dxn = g(n)(x), n = 0, 1, . . ., one finds

g(n)m (x) = O(1/xm+n). (12)

Equation (2) can be rewritten as S[G(t)](z) = ∫ ∞
0 exp(−u)g(y + ln u) du. Formal

expansion in powers of ln u leads to

S[G(t)](z) =
∞∑

n=0

1

n!
�n g(n)(y). (13)

Here, �n = �(n)(1) denotes the nth derivative of the gamma function at unity. One gets
�0 = 1,−�1 = γ is Euler’s constant, and �n for n � 2 can be expressed in terms of γ and
Riemann’s zeta-function values ζ(K ) with K = 2, . . . , n [32]. For example, �2 −�2

1 = ζ(2).
Using equation (13) with G(t) = gm(x), one gets an asymptotic expansion in terms of
increasing order O(1/ym+n). The leading n = 0 contribution is gm(y); and this is the result of
the Tauberian theorem [31]. The terms for n � 1 provide systematic improvements for large
y, i.e., for large times or small frequencies [7].

If one uses equation (13) for G(t) = G(t)F(t), one gets the asymptotic expansion

S[G(t)F(t)](z)− S[G(t)](z)S[F(t)](z) =
∞∑

n=2

n−1∑
m=1

[�n − �n−m�n]

(n − m)!m!
g(n−m)(y) f (m)(y). (14)

Let us use G(t) = gm1(x) and F(t) = gm2(x). The Tauberian theorem implies that
the leading contribution to S[Gm1(t)Gm2 (t)](z) cancels against the leading contribution
to S[Gm1(t)](z)S[Gm2(t)](z). The tricks underlying the asymptotic solution of the MCT
equations at a higher-order singularity are based on the observation that the leading corrections
to the Tauberian theorem also cancel [7]:

S[gm1(t)gm2(t)](z)− S[gm1(t)](z)S[gm2(t)](z) = O(1/ym1+m2+2). (15)

The difference between the two terms on the left-hand side is two orders smaller for vanishing
frequencies than each of the terms separately.

3. Critical correlators for one-component models at an A3-singularity

3.1. The leading contribution

It will be shown in section 5 how one can reduce the problem of solving equations (6) and (7)
for a general number M of the correlators to the special problem of solving for M = 1 models.
Therefore, the problem shall be discussed first for one-component models. For this case, one
can drop the indices in all formulae of section 2.1. There is only one correlator φc(t), one
long-time limit f c for the critical point Vc, and one function φ̂(t) determining the critical
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correlator as φc(t) = f c + (1 − f c)φ̂(t). The Jacobian matrix agrees with its eigenvalue, and
this is zero. Hence, equations (6) and (7) can be noted as

K (z) = 0, (16a)

K (z) =
∞∑

n=2

Kn(z). (16b)

Here, Kn(z) is the expansion term of order φ̂n . Let us introduce the abbreviation

ψn(z) = S[φ̂n(t)](z)− S[φ̂(t)]n(z), (17)

and denote its inverse transform by ψn(t), i.e., S[ψn(t)](z) = ψn(z). Remembering that for
M = 1 models there holds µn = 1 − A(n)c, one gets Kn(z) = ψn(z) − µnS[φ̂n(t)](z) [24].
Specializing to the A3-singularity as noted in equation (10a), the equation of motion (16a) is
defined by

K (z) = ψ2(z)− µ3S[φ̂3(t)](z)

+ κψ3(z)− µ4S[φ̂4(t)](z)

+ K ′(z).
(18)

Here, K ′(z) = κ ′ψ4(z) − µ5S[φ̂5(t)](z) + · · ·. The numbers κ and κ ′ have been introduced
for later convenience. For the M = 1 models under consideration, one has to substitute
κ = κ ′ = 1.

Let us examine whether one can solve the equations with the Ansatz φ̂(t) = gm(x) =
cm/xm . From equation (13) one gets S[φ̂3(t)](z) = (cm/ym)3 + O(1/y3m+1). Using
equation (14) with G(t) = F(t) = gm(x), one obtains ψ2(z) = ζ(2)(mcm/ym+1)2 +
O(1/y2m+3). Choosing m = 2, both terms in the first line of equation (18) are of the same order
1/y6. They cancel in this leading order if µ3c3

2 = 4ζ(2)c2
2. From equations (13) and (15) one

infers that the terms in the second line of equation (18) are of order 1/y8 and K ′ = O(1/y10).
One concludes that the leading asymptotic behaviour of the critical correlator for large times
is described by φ̂(t) = g2(x), where

g2(x) = c2/x2, c2 = 4ζ(2)/µ3. (19)

3.2. The leading correction

Let us split the function φ̂(t) into its leading term and a correction g̃(x):

φ̂(t) = g2(x) + g̃(x). (20)

Substitution of this formula into the first line of equation (18), one gets expressions up to
third order in g̃. The term independent of g̃ is S[g2

2(x)](z)− S[g2(x)]2(z)− µ3S[g3
2(x)](z),

and it shall be denoted by [(4ζ(2))2/µ3]F(y). Equations (13) and (14) are used to derive the
asymptotic series

F(y) =
∞∑

n=3

(−1)n+1

µ3 y4+n

{
1

30
ζ(2)

(n + 3)!

(n − 2)!
�n−2 −

n−2∑
m=1

(n − m + 1)(m + 1)(�n − �n−m�m)

}
.

(21a)

The term linear in g̃ is 2{S[g2(x)g̃(x)](z)− S[g2(x)](z)S[g̃(x)](z)} − 3µ3S[g2
2(x)g̃(x)](z).

It shall be denoted by [(4ζ(2))2/µ3][Dg̃(y)+D′ g̃(y)]. Here, the differential operatorD yields
the leading contribution

Dg̃(y) = [y · dg̃(y)/ dy + 3g̃(y)]/y4. (21b)
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The correction D′ is expanded with the aid of equations (13) and (14):

D′ g̃(y) = [1/2ζ(2)]
∞∑

n=3

n−1∑
m=1

(−1)n−m
{
[g̃(m)(y)/yn+2−mm!](�n − �n−m�m) + ζ(2)�n−2

× [g̃(m−1)(y)/yn+3−m(m − 1)!](n − m + 1)(n − m)(n − m + 1)
}
. (21c)

With these notations, the equation of motion for g̃(y) is reformulated as a linear differential
equation with some inhomogeneity I (y):

Dg̃(y) = I (y), (22a)

I (y) = F(y) + D′ g̃(y)
+ S[g̃2(x)](z)− S[g̃(x)]2(z)− 3µ3S[g2(x)g̃

2(x)](z)

− µ3S[g̃3(x)](z) + κψ3(z)− µ4S[φ̂4(t)](z) + K ′(z)
. (22b)

It might be adequate to emphasize that equations (19)–(22b) formulate an exact rewriting of
equation (3) for M = 1 models.

The iterative solution of equation (22a) for g̃(x) is based on the observation that one gets
for functions gm(y) from equation (11b):

Dgm(y) = [p′
m(y) + (3 − m)pm]/ym+4. (23)

If one tries with g̃(x) = g3(x), one finds on the one hand Dgm(y) = p′
3(y)/y7. On the other

hand, one verifies that all terms on the right-hand side of equation (22b) areO(1/y8) except for
the n = 4 contribution to F(y). One checks that F(y) = 24ζ(3)/(µ3y7) + O(1/y8). Hence,
the leading order solution for g̃ reads

g3(x) = c3 ln(x)/x3, c3 = 24ζ(3)/µ3. (24)

Combining this finding with equations (19) and (20) and eliminating all the abbreviations, one
reproduces a result of [7]:

φ◦(t) = f ◦ + (1 − f ◦)[c2/ ln2(t/t0)] {1 + [6ζ(3)/ζ(2)] ln ln(t/t0)/ ln(t/t0)} . (25)

This formula describes the critical correlator up to errors of the order 1/ ln4(t/t0).

3.3. Higher-order contributions

The equation for g̃(y) allows for an iterative solution so that the iteration step with number m
reads g̃ = g3 + g4 + · · · + gm . Here the numerator polynomial in equation (11b) is of degree
not larger than (m − 2), i.e.,

gm(x) =
m−2∑
l=0

cm,l lnl(x)/xm. (26)

Suppose the procedure had been carried out up to step m − 1,m = 4, 5, . . .. Then
Dg̃(y) = Dgm(y)+O(1/ym+3). By construction, all terms up to order (m+3) cancel against the
one appearing in I (y). One checks that the leading contribution to I (y) reads p(ln y)/ym+4,
where the degree of the polynomial p does not exceed m − 3. Hence, equation (22a) is
equivalent to the linear differential equation p′

m + (3 − m)pm = p. It is readily solved by
equation (26), provided the coefficients cm,l are chosen properly.

In order to determine g4 and g5, one can drop K ′(z) in equation (22b). The coefficients
cm,l are given by µ3, κ , and µ4 as follows:

c4,0 = 792ζ(3)2/(π2µ3) + [4µ4/(9µ
2
3)− 4κ/(3µ3)− 7/6]π4/µ3, (27a)

c4,1 = −432ζ(3)2/(π2µ3), (27b)

c4,2 = 648ζ(3)2/(π2µ3), (27c)
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c5,0 = ζ(3)π2[400κµ3 + 1551µ2
3 − 160µ4]/(15µ3

3)− [39 744ζ(3)3/π4 + 528ζ(5)]/µ3,

(28a)

c5,1 = 64 800ζ(3)3/(π4µ3)− 4ζ(3)π2(21µ2
3 − 24κµ3 + 8µ4)/µ

3
3, (28b)

c5,2 = −27 216ζ(3)3/(π4µ3), (28c)

c5,3 = 15 552ζ(3)3/(π4µ3). (28d)

The coefficients for g6 and g7 have also been determined. The only new model parameters
entering the coefficients are µ5 and κ ′ [33].

3.4. Discussion

The preceding results shall be demonstrated quantitatively for the simplest model exhibiting a
generic A3-glass-transition singularity. This model was derived for a spin-glass system and it
is defined by the mode-coupling function [34]

m(t) = v1φ(t) + v3φ
3(t). (29)

Here, and in the following models, we use a Brownian short-time dynamics as specified by the
equation of motion

τ∂tφ(t) + φ(t) +
∫ t

0
dt ′m(t − t ′)∂ ′

tφ(t
′) = 0, (30)

to be solved with the initial condition φ(t → 0) = 1. The short-time asymptote is
φ(t) − 1 = −(t/τ) + O((t/τ)2). The singularity is obtained for the coupling constants
v◦

1 = 9/8 and v◦
3 = 27/8. The critical long-time limit of the correlator is f ◦ = 1/3 [6, 24].

The other parameters entering the coefficients via equations (27) and (28) are µ3 = 1/3
and µ4 = µ5 = κ = κ ′ = 1. Thus, all expansion formulae are specified, except for the
timescale t0. To ease reference to various degrees of asymptotic expansions, let us introduce
the abbreviation for the nth order approximation

φ◦(t)n = f ◦ + (1 − f ◦)Gn(t), Gn(t) =
n∑

m=2

gm(ln(t/t0)). (31)

Figure 1 exhibits φ◦(t) as obtained from equations (29) and (30) for the state V = V◦.
The approach to the critical plateau f ◦ is significantly slower than the one for a typical A2-
singularity. In the latter case, the decay comes close to the plateau within a few decades of
increase of the time when a deviation of 5% is used as a measure. Such a criterion is not met by
the decay in figure 1 for the entire window in time shown. For t = 1011, the critical correlator
φ◦(t) is still 5.5% above f ◦. To apply the asymptotic approximation, one has to match the
timescale t0 at large times. A reliable determination of t0 is not possible when using only G2(x)
or G3(x). Using G7(x) and extending the numerical solution to t/τ = 1038, it is possible to
fix t0/τ = 1.6 × 10−4. Notice that t0 is several orders of magnitude smaller than the timescale
τ for the transient dynamics. With this value for t0, the successive asymptotic approximations
are shown in figure 1. The leading approximation from equation (31), labelled G2, deviates
from the critical correlator strongly. Including the next-to-leading term g3(x) yields the
approximation labelled G3, i.e., equation (25). A square indicates that G3 deviates from the
critical correlator by less than 2% for t/τ � 5×105. If that criterion is relaxed to 5%, G3 obeys
it for t � 103τ . The approximation by G3 provides a first reasonable approximation to φ◦(t).
Including further terms of the expansion improves the approximation as is shown for G5 and
G7. One recognizes that proceeding from G5 to G7 still improves the range of applicability
by one order of magnitude in time. We conclude that the asymptotic expansion explains
quantitatively the critical decay at the A3-singularity for all times outside the transient regime.
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Figure 1. Critical decay at the A3-singularity of the model defined by equations (29) and (30).
The full curve shows the solution for φ◦(t). The curves labelled Gn , for n = 2, 3, 5, 7, show the
approximations from equation (31) with the timescale t0/τ = 1.6 × 10−4. The time where G3,
G5, and G7 deviate by 2% from φ◦(t) is marked by a square (�), a triangle (	), and a diamond
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3 4 5 6 7
n

1

2

3

4

5

6

7

t
0
/10

-4

2 3 4 5 6 7
n

-4

-3

-2

-1

0

log
10

t
0

t’
0

t"
0

Figure 2. Timescale t0 in units of τ for the approximation of the critical decay at the A3-singularity
of the model studied in figure 1 by including n orders of the asymptotic expansion, equation (31).
Timescales obtained by matching G7(t) at large time, 35 � log10 t � 38, are shown by crosses
(×). The times t ′0 resulting from matching the solutions at t = 106 are shown by filled circles (•).
The diamonds (
) show the timescale t ′′0 resulting from matching where φ(t) = 2/3. The inset
shows t0 on a logarithmic scale. The lines are guides to the eye.

Matching a timescale t0 at t/τ = 1038 and using six terms of the expansion in equation (31)
is not a promising perspective for fitting data. However, the expansion leads to a reasonable
approximation also for short times. Therefore, we may depart from the procedure to match t0
at large times and try to fit t0 for shorter times. Figure 2 shows as crosses the values obtained
for t0 when matching the approximations at the large times mentioned above. We will consider
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two procedures for fitting. The first shall define a scale t ′
0 by matching the critical correlator

by the approximation at t = 106. The second timescale t ′′
0 is obtained from matching at 50%

of the decay, i.e., for the time t∗ where φ◦(t∗) = 2/3. We infer from the inset of figure 2
that all methods to fix t0 based on the term G2(x) alone are off by orders of magnitude. The
approximation G3(x) yields the correct order of magnitude for t0 in all three approaches.
Starting with n = 5, the scales t0 and t ′

0 can no longer be distinguished. Therefore, matching
the approximation at 106 is comparable to matching a true asymptotic limit. The value t ′

0 is a
better approximation for t0 than t ′′

0 .

4. Critical correlators for one-component models at an A4-singularity

Within the theory of the logarithmic decay as presented in [24], it is possible to specialize to
the A4-singularity by simply setting µ3 = 0 in the final formulae. Different from that, the
critical decay for the A4-singularity does not follow from the solution for the A3-singularity
but requires a different asymptotic expansion. This can be inferred from the fact that all the
coefficients cm,l in equation (26) contain µ3 in the denominator. However, the tricks used for
finding a solution in terms of slowly varying functions are the same for the A4 as explained
above for the A3.

4.1. The leading contribution

Using equation (10b) for an A4-singularity, equations (16a) and (18) can be regrouped as

0 = ψ2(z) − µ4 S[φ̂4(t)](z)

+ κψ3(z) − µ5 S[φ̂5(t)](z)

+ κ ′ψ4(z) − µ6 S[φ̂6(t)](z)
+ . . . .

(32)

With the Ansatz φ̂(t) = gm(x) = cm/xm , one arrives for the terms of the first line at
ψ2(z) = ζ(2)(mcm/ym+1)2 + O(1/y2m+3) and S[φ̂4(t)](z) = (cm/ym)4 + O(1/y4m+1). For
m = 1, the first line in equation (32) is of leading order O(1/y4) with the equation for the
coefficient ζ(2)c2

1 = µ4c4
1. This results in the leading-order solution [7],

g1(x) = c1/x, c1 = √
ζ(2)/µ4. (33)

4.2. The leading correction

The corrections may be rephrased in terms of a differential operator and the solution
is straightforward as before. Since, later on, only the first correction will be needed
explicitly, it will be calculated here by the linear differential equation for the Ansatz φ̂(t) =
[φ∗(t)− f ∗] /(1 − f ∗) = g1(x) + g̃(x),

2y3g̃′(y) + 4y2g̃ = 4
√
ζ(2)/µ4ζ(3)/ζ(2) + 3ζ(2)κ/µ4 − µ5ζ(2)/µ2

4. (34)

This is solved in leading order by g2(x):

g2(x) = c2 ln(x)/x2,

c2 = 2
√
ζ(2)/µ4ζ(3)/ζ(2) + 3ζ(2)κ/(2µ4)− µ5ζ(2)/(2µ2

4).
(35)

Higher-order contributions for m � 3 can be written in the form

gm(x) =
m−1∑
l=0

cm,l lnl(x)/xm (36)
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Figure 3. Critical decay φ∗(t) at the A4-singularity of the model defined by equations (30) and (38),
and the unit of time chosen such that τ = 1. The approximations by equation (37) with t0 = 0.055
matched for G4 are labelled accordingly. The square and the circle mark the time where the
approximation by G4 deviates from the solution by 5% and 10%, respectively. The triangle refers
to a 5% deviation of G2 from the solution. The inset displays the inverse of [φ∗(t)− f ∗] and its
respective approximations.

with the appropriate choice of the parameters cm,l . Hence, the general solution for the critical
decay at an A4-singularity in the one-component case is represented up to errors of order
O(ln−(n+1)(t)) as

φ∗(t) = f ∗ + (1 − f ∗)Gn(t), Gn(t) =
n∑

m=1

gm(ln(t/t0)). (37)

Because the leading order result g1(x) is of orderO(1/ ln t) each higher-order solution requires
the inclusion of an additional line in equation (32). This adds new parameters like µ6 and κ ′
in each step, whereas for the A3-singularity, equation (26), additional parameters occur only
in every second step of the expansion.

4.3. Discussion

The results for the A4-singularity shall be demonstrated for the kernel [6],

m(t) = v1φ(t) + v2φ
2(t) + v3φ

3(t), (38)

substituted into the equation of motion (30) used with τ = 1. The model has an A4-singularity
at V∗ = (1, 1, 1) with f ∗ = 0 and coefficients µl, l � 4 and κ being unity.

Using up to four terms in the expansion (37), the timescale is fixed at t0 = 0.055.
Successive approximations to the numerical solution are shown in figure 3. Again, the leading
approximation G1 does not describe the solution. The inset shows [φ∗(t) − f ∗]−1, where a
decay proportional to 1/ ln t would be seen as a straight line. G1 yields such a straight line by
definition; but it has the wrong slope compared to the solution. The latter exhibits a straight
line for t � 107. Including the leading correction in G2 can account for the slope of the
long-time solution. Further terms in the asymptotic expansion enhance the accuracy of the
approximation. G4 fulfills the 5% criterion at t = 3 × 103, and is in accord with the solution
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on the 10% level for t > 230. G2 intersects φ∗(t) for shorter times but deviates first from the
solution by 5% at t = 9 × 1012.

5. Asymptotic expansion of the critical correlators at an A3-singularity

For the study of the general models, we go back to equations (4)–(7). The solvability condition
for equation (6) reads∑

q

a∗
q Jq(z) = 0, (39a)

and the general solution can be written as

φ̂q(t) = aq φ̂(t) + φ̃q(t). (39b)

The splitting of φ̂q(t) in two terms is unique if one imposes the convention
∑

q a∗
q φ̂q(t) = φ̂(t).

Then, the part φ̃q(t) can be expressed by means of the reduced resolvent Rqk of A(1)cqk :

S[φ̃q(t)](z) = Rqk Jk(z). (39c)

The matrix Rqk can be evaluated from matrix A(1)cqk and the vectors a∗
k, ak [35]. Let us emphasize

that equations (39a)–(39c) together with the definitions in equations (4) and (7) are an exact
reformulation of the equation of motion (3) for states at glass-transition singularities. It is
the aim of following calculations to express φ̃q(t) recursively in terms of φ̂(t) and to show
that φ̂(t) has the asymptotic expansion discussed in section 3 for the one-component models.
The starting point is the observation that φ̃q(t) is small and of higher order than φ̂(t). This is
obvious, since equations (7) and (39c) imply φ̃q(z) = O(φ̂2) + O(φ̂φ̃q) + O(φ̃2

q). Therefore,
one gets

Jq(z) = O(φ̂2), (40a)

φ̃q(t) = O(φ̂2). (40b)

We assume that φ̂ can be expanded in terms of functions gm(x) as defined in equations (11a),
(11b), and show the legitimacy of this Ansatz by the success of the following constructions.

5.1. Expansion up to next-to-leading order

Substituting the splitting (39b) into the inhomogeneity J (2)q (z) from equation (7) yields

Jq(z) = A(2)cqk1k2
ak1 ak2S[φ̂(t)2](z)− a2

qS[φ̂(t)]2(z) + O(φ̂3). (41)

The function ψ2(z) in equation (17) is of order O(φ̂3) because of equation (15). Therefore,

Jq(z) = (A(2)cqk1k2
ak1 ak2 − a2

q)S[φ̂(t)2](z) + O(φ̂3). (42)

Remembering equation (9) and the condition µ2 = 0, one notices that the solvability
condition (39a) is fulfilled to order O(φ̂2). Hence, equation (39c) yields

φ̃q(t) = Xq φ̂
2(t) + O(φ̂3) (43)

with the abbreviation [24]

Xq = Rqk

[
A(2)ckk1 k2

ak1 ak2 − a2
k

]
. (44)

The first step in the derivation of q-dependent corrections results in the extension of
equation (39b):

φ̂q(t) = aq φ̂(t) + Xq φ̂
2(t) + φ̃′

q(t), (45a)



S4820 W Götze and M Sperl

where

φ̃′
q(t) = O(φ̂3). (45b)

The next step is started by substituting the result (45a) into equation (7) for Jq(z). Terms of
order O(φ̂2) vanish altogether as demonstrated above, and only a2

qψ2(z) and additional terms

of order O(φ̂3) are left from J (2)q (z). Equation (17) is used to reduce products of S-transforms
to S-transforms of products. The inhomogeneity assumes the form

Jq(z) = S[φ̂(t)3](z)
[

A(3)cqk1k2 k3
ak1 ak2 ak3 + 2(A(2)cqk1k2

ak1 Xk2 − a2
q)− (a3

q + 2aq Xq)
]

+ a2
qψ2(z) + O(φ̂4). (46)

Let us introduce κ = 2ζ and µ3 in agreement with [24]:

ζ =
∑

q

a∗
q

[
aq Xq + a3

q/2
]
, (47a)

µ3 = 2ζ −
∑

q

a∗
q

[
A(3)cqk1k2k3

ak1 ak2 ak3 + 2A(2)cqk1k2
ak1 Xk2

]
. (47b)

Then, the solvability condition (39a) reads

0 = ψ2(z)− µ3S[φ̂(t)3] + O(φ̂4). (48)

This equation was discussed in section 3. The result is φ̂(t) = g2(x) + g3(x) + O(1/x4)

with the functions g2(x) and g3(x) specified in equations (19) and (24), respectively. From
equation (43), one infers that φ̃q(t) = O(1/x4). For the solution up to next-to-leading order,
only the first term on the right-hand side of equation (45a) matters. However, the discussion of
the solvability condition including the Xq φ̂

2(t)-term was necessary in order to fix the important
number µ3, which enters equation (48) and thereby the cited formulae for g2(x) and g3(x).

5.2. Higher-order expansions

After substitution of equation (45a) into equation (7) in order to extend the expansion of Jq(z),
one can use equation (39c) to determine φ̃′

q(t) up to errors of order O(φ̂4). There appears a
new amplitude Yq as

Yq = Rqk
{
[A(3)ckk1k2k3

ak1 ak2 ak3 − a3
k ] + 2[A(2)ckk1k2

ak1 Xk2 − ak Xk] + µ3a2
k

}
. (49)

To get the last term in the curly bracket, equation (48) was used to express the frequency
dependence of Jq(z) in equation (46) solely by S[φ̂(t)3](z). After this second reduction step,
one gets the extension of equation (45a):

φ̂q(t) = aq φ̂(t) + Xq φ̂
2(t) + Yq φ̂

3(t) + φ̃′′
q (t), (50a)

where

φ̃′′
q (t) = O(φ̂4). (50b)

Here, the contribution proportional to Yq has g3
2 as the lowest-order term, and therefore it is

of higher order than g5. However, the calculation of the amplitude Yq is a prerequisite to
determine the parameter µ4, which will be needed below.

To continue, we substitute equation (50a) into the solvability condition (39a). The same
tricks as before are required to yield a definition ofµ4 which is consistent with the equations for
the one-component case. Before adding new terms from the expansion of Jq(z) in equation (7),
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the remaining terms of orderO(φ̂5) in equation (46) shall be collected from the lines with n � 3.
A new parameter is introduced to shorten notation,

κ̃ = 2
∑

q

a∗
q aq Xq , (51)

and the contribution to Jq(z) so far is κψ3(z) − κ̃S[φ̂]ψ2(z). Equation (48) can be used
to eliminate ψ2(z). With the assistance of equation (17), this contribution is reduced to
κψ3(z) − µ3κ̃S[φ̂4] + O(φ̂5). Next, the term from equation (7) for n = 4 is added and
the term with κ̃ is absorbed in the definition of µ4. Then, the solvability condition reads

0 = κψ3(z)− µ4S[φ̂4] + O(φ̂5), (52)

where the definition for the remaining parameter µ4 is

µ4 =
∑

q

a∗
q

{
[a4

q − A(4)cqk1k2 k3k4
ak1 ak2 ak3 ak4 ] + 3[a2

q Xq − A(3)cqk1k2k3
ak1 ak2 Xk3 ]

+ [X2
q − A(2)cqk1k2

Xk1 Xk2 ] + 2[aqYq − A(2)cqk1k2
ak1 Yk2 ]

}
+ κ̃µ3. (53)

After having defined all the necessary parameters, we see that the solution from section 3.3
for φ̂(t) is consistent with the solution of the q-dependent case as formulated in equation (50a).
Keeping only terms up to errors of order (1/ ln t)6, one arrives at the asymptotic formula for
the critical correlator at an A3-singularity,

φ◦
q(t) = f ◦

q + h◦
q

{
g2(x) + g3(x)

+ [g4(x) + K ◦
q g2

2(x)] + [g5(x) + 2K ◦
q g2(x)g3(x)]

}
, (54a)

with

h◦
q = (1 − f ◦

q )aq, K ◦
q = Xq/aq . (54b)

The first line of equation (54a) expresses the factorization theorem: φ◦
q(t) − f ◦

q is a product
of a first factor h◦

q , which is independent of time, and a second factor [g2(x) + g3(x)], which

is independent of the correlator index q . Factorization is first violated in order 1/ ln4 t , and
only the terms with the amplitudes K ◦

q are responsible for that. The expansion for φ◦
q(t) can

be carried out up to order 1/ ln5 t if µ4 is known. The next order includes g6(x) and requires
knowledge of the additional parameter µ5.

5.3. Discussion

As a simple example for the demonstration of the preceding results, an M = 2 model shall be
considered. The MCT equations for Brownian dynamics read, for q = 1, 2,

τq∂tφq(t) + φq(t) +
∫ t

0
mq(t − t ′)∂t ′φq(t

′) dt ′ = 0, (55a)

m1(t) = v1φ
2
1(t) + v2φ

2
2(t), (55b)

m2(t) = v3φ1(t)φ2(t). (55c)

This is a schematic model for a symmetric molten salt [36]. The model has three control
parameters, V = (v1, v2, v3). The glass-transition singularities in this system can be evaluated
analytically. There is an A4-singularity at v∗

3 ≈ 24.78, and A3-singularities occur for v3 > v∗
3 .

To allow for a comparison with previous work [24], we set τ1 = τ2 = 1 and choose the
A3-singularity for v◦

3 = 45.
Let us use the rescaled correlators φ̂◦

q(t) = [φ◦
q(t) − f ◦

q ]/h◦
q for the following

considerations. The result in equation (54a) assumes the form φ̂◦
q(t) = G5(x) + K ◦

q G̃5(x),
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Figure 4. Critical decay at the A3-singularity in the two-component model defined by
equations (55a)–(55c) for v◦

3 = 45 and τ1 = τ2 = 1. The rescaled solutions φ̂◦
q (t) =

[φ◦
q (t) − f ◦

q ]/h◦
q , q = 1, 2, are shown for as full curves. The asymptotic approximation (54a)

is shown dashed for q = 1 and dotted for q = 2. The points where the approximation deviates
by 5% from the solution for q = 1, 2, and the point where the solutions differ by 5% from each
other are marked by a square, a triangle and a circle, respectively. The chain curve with label G2
shows the leading contribution from equation (54a). The inset shows as full curves the rectification,
φ̂◦

q (t)
−1/2 for q = 1 (lower full curve) and q = 2 (upper full curve). The q-independent part G5 of

the approximation in equation (54a) is given by the dashed curve. The dotted curve and the chain
curve show the leading and next-to-leading order approximations G2 and G3, equation (54a). The
timescale t0 is 4.07 × 10−3.

with G5(x) from equation (31) and G̃5(x) = g2
2(x) + 2g2(x)g3(x). Since G̃5(x) is of higher

order than G5(x), equation (19), correlators for different q approach each other for sufficiently
large time as is demonstrated in figure 4. The time t ≈ 2×108, where φ̂◦

2 deviates by 5% from
φ̂◦

1 , is marked by a circle. The amplitude K ◦
q introduces the q-dependent corrections which are

smaller for q = 1 than for q = 2. To evaluate G5(x) and G̃5(x), we determined the following
parameters: µ3 = 0.772, κ = 0.888, and µ4 = 1.38. Notice that µ3 is more than twice as big
as for the model studied in figure 1. Since the coefficients cm,l in equation (26) contain powers
of µ3 in the denominator, corrections are smaller if µ3 is larger; see equations (27a)–(27c)
and (28a)–(28d). Because of the smaller corrections, the timescale can be matched with G5(x)
between t = 1020 and 1025, which is significantly earlier than for the model studied in figure 1.
We get t0 = 4.07 × 10−3.

The asymptotic approximation (54a) is shown as a dashed curve for q = 1 in figure 4;
it deviates by more than 5% from the solution if t � 105 (�). The approximation for q = 2
(dotted) deviates by more than 5% for t � 6×106 (	). This difference in the range of validity
can be understood qualitatively by considering the q-dependent corrections of higher order
in equation (50a), Kq [g2

3(x) + 2g2(x)g4(x)] + Yq g3
2(x)/aq with Yq from equation (49). Both

Kq and Yq/aq are smaller for the first correlator, Y1/a1 = −0.1928 and Y2/a2 = 5.761, and
introduce fewer deviations from the q-independent part G6(x) of the approximation in higher
order.

The q-independent function G5(x) would lie on top of the dashed curve in figure 4
and is therefore shown only in the inset, which also displays the critical correlators and
the q-independent functions G2(x) and G3(x), equation (31). Plotting φ̂◦

q(t)
−1/2 we can
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identify 1/ ln2 t-behaviour as a straight line. The critical correlators exhibit a straight line
starting from t ≈ 109. The leading approximation G2(x) is a straight line as well, but has
a slope slightly larger than the solution. The first correction G3(x) resembles the slope of
the solution but is offset from the solution by a shift of the timescale. This was observed
before in figure 1. Since G5(x) + K ◦

q G̃5(x) was used to match the timescale t0 and as

G̃5(x) decays faster than the q-independent part, G5(x) coincides with the solution for larger
times.

As a second example, the asymptotic laws shall be considered for the square-well system
(SWS). This is the microscopic model for a colloid explained in section 1. The microscopic
version of MCT for colloids is used with the wavevector moduli discretized to a set of M = 500
values. The structure factors that define the mode-coupling functional Fq in equation (1) are
calculated in the mean-spherical approximation. We shall consider the same A3-singularity
for δ◦ = 0.03 as considered in previous studies [26, 27]. The reader is referred to these papers
for further details and for an extensive discussion of the relaxation near the specified A3-
singularity. For the evaluation of the approximation (54a), we need the correction amplitudes
K ◦

q which are shown in figure 8 of [26] and the parameters characteristic for the A3-singularity
under discussion,

µ3 = 0.109, κ = 0.314, µ4 = 0.204. (56)

The asymptotic approximation reads

φ̂◦
q(t) = 60.4/x2 + 264.7 ln x/x3

+ [3374.9 − 580.2 ln x + 870.4 ln2 x]/x4

+ [−11 745.7 − 27 952.1 ln x − 4452.2 ln2 x + 2544.1 ln3 x]/x5

+ K ◦
q

{
3643.9/x4 + 31 953.7 ln x/x5

}
+ O(x−6). (57)

The first line represents g2(x) and g3(x), equations (19) and (24). The second and third line
exhibit the contributions up to g4(x) and g5(x), equations (26)–(28d), which are independent
of the wavevector. The q-dependent correction terms appear with the prefactor K ◦

q in the curly
brackets; they are positive for t/t0 > 2.5 and monotonically decreasing for t/t0 > 3.1.

Figure 5 shows the rescaled functions φ̂◦
q(t) for three representative wavenumbers. At

the peak of the structure factor, qd = 7, the amplitude is negative, for qd = 57.4 the
correction amplitude is close to zero, and for the wavevector qd = 172.2 the amplitude is
positive. The functions (full curves) deviate strongly from each other in the window of time
presented, demonstrating severe violation of the factorization property. If the deviations among
the correlation functions for different wavevectors cannot be assigned to the q-dependent
corrections in equation (57) within an accessible window in time, we cannot expect that
equation (57) will be sufficient to describe the critical decay. Suppose the critical correlators
for different wavevectors are approximated by equation (57). Then, for arbitrarily chosen
wavevectors q1 and q2, the difference �̂[q1, q2](t) = φ̂◦

q1
(t)− φ̂◦

q2
(t) is given in leading order

by the difference in the correction amplitudes, K ◦
q1

− K ◦
q2

, and the terms in the curly brackets

in equation (57). From figure 5 we infer that �̂[q1, q2](t) is not yet close enough to zero to
neglect the terms in the curly brackets. The values of φ̂◦

q(t) for the three chosen q-values are

marked by diamonds in figure 5 for t = 105 and 1012. We get �̂[7, 57.4](105) = −0.030
and �̂[172.2, 57.4](105) = 0.161. These differences are large but they correctly reflect the
ordering in the values for K ◦

q which increase with q . From that we conclude that the treatment
of the q-dependence in equation (57) is qualitatively correct.

If the time dependence of �̂[q1, q2](t)were given exclusively by the terms in curly brackets
in equation (57), then the differences among the K ◦

q would explain the amplitudes of the decay
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Figure 5. Critical decay at the A3-singularity of the square-well system (SWS) for the relative
attraction-shell width δ◦ = 0.03. Full curves show the rescaled correlation functions φ̂◦

q (t) =
[φ◦

q (t)− f ◦
q ]/h◦

q at V◦, for the wavevector values qd = 7, 57.4, and 172.2 as indicated. The unit
of time is chosen so that 1/D0 = 160, with D0 denoting the single particle diffusivity [26, 27]. The
dashed curves exhibit the asymptotic approximation of equation (57) with a timescale t0 = 4×10−5

matched in the interval t = 1040 · · · 1045. For qd = 7.0, 57.4, and qd = 172.2, the correction
amplitudes are K ◦

q = −1.704, −0.002 24, and 4.814, respectively. The filled diamonds for t = 105

and t = 1012 mark the values for φ̂◦
q(t) for the three q-values. The inset shows φ̂◦

q (t)
−1/2 for the

q-values above from top to bottom and the q-independent approximations defined in equation (31)
in the same representation, G2(t)−1/2, G3(t)−1/2 and G5(t)−1/2, respectively.

in �̂[q1, q2](t). To quantify deviations from that case we introduce the ratio ν[q1, q2, q3](t) =
�̂[q1, q2](t)/�̂[q2, q3](t). For t → ∞ this ratio is ν∞ = (K ◦

q1
−K ◦

q2
)/(K ◦

q2
−K ◦

q3
). Deviations

from ν∞ indicate that higher-order q-dependent corrections are present in addition to the terms
in equation (57). For the q-values used in figure 5 we get ν∞ = (K ◦

7 −K ◦
57.4)/(K

◦
57.4−K ◦

172.2) =
0.354. Since K ◦

57.4 ≈ 0, this ratio is almost equivalent to −K ◦
7/K ◦

172.2. The ratio at time t = 105

is ν[7, 57.4, 172.2](105) = 0.187 and therefore deviates by 90% from ν∞. Hence, we cannot
expect equation (57) to describe the critical decay in figure 5 at that time. At t = 1012, the ratio
has decayed to ν[7, 57.4, 172.2](1012) = 0.280, which deviates from ν∞ by 20%. Here, the q-
dependent corrections are also in reasonable quantitative agreement with the approximation in
equation (57). To determine t0, we use extremely large times. The inset of figure 5 displays the
rescaled correlators as φ̂◦

q(t)
−1/2. In this representation, the leading term g2(x) in equation (57)

yields a straight line. We see that for large times the correlators for different q indeed come
closer together, and the ratio at t = 1040 is ν[7, 57.4, 172.2](1040) = 0.341, which deviates by
4% from ν∞. For the determination of t0 we use equation (57) for q = 7, 57.4, and 172.2 and
match the asymptotic approximation to the numerical solutions in the interval from t = 1040

to 1045. This results in a value t0 = 4 × 10−5. For times larger than t ≈ 1050 the numerical
solution no longer follows the approximation. In that region inaccuracies in the control-
parameter values lead to deviations from the asymptotic behaviour. These inaccuracies also
prevent us from fixing more than just one digit of t0. The dashed curve in the inset labelled G5

shows the result for neglecting the last line of equation (57). This also describes the correlator
for q = 57.4 where Kq is close to zero. Taking into account only the first line of equation (57)
yields the dotted curve labelled G3. This curve is clearly inferior to G5, but it captures the
slope of the solution still better than G2.
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In the large panel of figure 5, one can compare the critical correlators with the
approximation by equation (57). For times of interest for experimental studies, the description
is reasonable qualitatively. Especially the leading q-dependent corrections describe the
variations seen in the correlators down to relatively short times. The accuracy of the
approximation that was demonstrated for the schematic models in figures 4 and 1 is far better
than seen in figure 5 for the SWS. This difference is mainly due to different values of the
parameter µ3 that characterizes the various A3-singularities. For the two-component model
we had µ3 = 0.77 and for the one-component model there was µ3 = 1/3. The small value
µ3 = 0.109 for the SWS implies slow convergence of the asymptotic expansion. Therefore,
a quantitative description by equation (57) is possible only for times exceeding considerably
the ones shown in figure 5.

6. Asymptotic expansion of the critical correlators at an A4-singularity

6.1. Expansion up to next-to-leading order

The calculation of the critical correlator at the A4-singularity is so involved that we restrict
ourselves to the leading and next-to-leading order result. The equations (40a)–(53) remain
valid, and equations (49) and (53) simplify because µ3 = 0. The difficulty comes about
because µ5, which enters equation (35), has to be determined. This requires the extension
of equation (50a), and thereby there appears a further amplitude. The additional amplitude
Zq is obtained by also including terms with n = 4 from equation (7). Applying the same
manipulations as above, one arrives at φ̃′′

q (t) = Zq φ̂
4 + O(φ̂5) with the amplitude

Zq = Rqk
{
[A(4)ckk1 k2k3k4

ak1 ak2 ak3 ak4 − a4
k ] + 3[A(3)ckk1k2k3

ak1 ak2 Xk3 − a2
k Xk]

+ [A(2)ckk1k2
Xk1 Xk2 − X2

k ] + 2[A(2)ckk1k2
ak1 Yk2 − akYk] + µ4a2

k

}
. (58)

Introducing the third q-dependent correction, the solution assumes the form

φ̂q(t) = aq φ̂(t) + Xq φ̂
2(t) + Yq φ̂

3(t) + Zq φ̂
4(t) + O(φ̂5). (59)

Collecting all terms of order O(φ̂4) after including also the line n = 5 from equation (7), one
gets from the solvability condition (39a):

µ5 =
∑

q

a∗
q

{
[a5

k − A(5)ckk1 k2k3k4k5
ak1 ak2 ak3 ak4 ak5 ]

+ 4[a3
k Xk − A(4)ckk1 k2k3k4

ak1 ak2 ak3 Xk4 ]

+ 3[ak X2
k + a2

k Yk − A(3)ckk1 k2k3
(ak1 Xk2 Xk3 + ak1 ak2 Yk3)]

+ 2[XkYk + ak Zk − A(2)ckk1k2
(Xk1 Yk2 + ak1 Zk2)]

}
+ κ̃µ4. (60)

Summarizing, the asymptotic solution for the critical decay at an A4-singularity in next-
to-leading order reads

φ∗
q (t) = f ∗

q + h∗
q

{
g1(x) + [g2(x) + K ∗

q g2
1(x)]

}
. (61)

Here, in analogy to equation (54b), the critical amplitude is h∗
q = (1− f ∗

q )aq and the correction
amplitude is given by K ∗

q = Xq/aq . The factorization theorem is obeyed by the leading-
order term only. Contrary to what was found in equation (54a) for the behaviour at the A3-
singularity, the leading correction term g2 is already modified by the q-dependent term K ∗

qg2
1(x)

of the same order. The higher-order contributions enter the curly brackets in equation (61)
as g3(x) + 2g1(x)g2(x)Xq/aq + g3

1(x)Yq/aq and g4(x) + g2
2(x)Xq/aq + 2g1(x)g3(x)Xq/aq +

3g2
1(x)g2(x)Yq/aq + g4

1(x)Zq/aq . However, g3(x) requires the evaluation of the parameters
µ6 and κ ′; g4(x) needs µ7 and κ ′′.
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Figure 6. Rescaled critical decay φ̂∗
q = [φ∗

q (t) − f ∗
q ]/h∗

q at the A4-singularity in the two-
component model defined in equations (55a)–(55c) (full curves). The asymptotic approximations,
equation (61), for q = 1, 2, are represented by the dashed and dotted curve, respectively. For q = 1
(�) and q = 2 (	), the points are marked where the solution and the approximation deviate by
5%. An additional point is indicated where the solution for q = 2 differs from the one for q = 1
by 10% (©). The inset displays the rectified representation of the solutions for q = 1 (lower full
curve) and q = 2 (upper full curve) together with the q-independent parts of the approximations,
G1 and G2, cf equation (37), and G2 + K2G̃2 (see text). The timescale t0 = 2.0 was matched for
t = 1020 · · · 1025.

6.2. Discussion

Figure 6 shows the critical decay at the A4-singularity of the two-component model defined in
equations (55a)–(55c). The parameters for the evaluation of g1(x) and g2(x) are µ4 = 1.53,
µ5 = 0.962, and κ = 0.386. We use again the rescaled correlator φ̂∗

q (t) = [φ∗
q(t) − f ∗

q ]/h∗
q

and check first the validity of the factorization in equation (61) in the form φ̂∗
q(t) =

G2(x) + Kq G̃2(x), where G2(x) = g1(x) + g2(x) and G̃2(x) = g2
1(x). The time where

the solutions for q = 1, 2 differ by 5% is only reached at t ≈ 1023. The circle marks the point
where the deviation is still 10% at t = 1012. We can then use the approximation (61) to fix the
timescale to t0 = 2.0, which then yields the dashed and dotted curves for q = 1, 2, accordingly.
For q = 1 this approximation deviates by 5% from the solution at t ≈ 8.2×104 (�). For q = 2
we find t ≈ 1.8 × 108 (	). This is plausible when appealing to the q-dependent higher-order
correction in equation (59), which also incorporates in addition to drastically different values
for Kq the values Y1/a1 = −0.579 and Y2/a2 = 3.76. A rectified representation of the critical
decay and the approximation in the inset again shows the leading-order G1(x) (dotted) as a
straight line of different slope than the solution (full curves) and the second correction G2(x)
(dashed). In this plot, the critical correlators for different q are still significantly different in
the entire window. But equation (61) can account for that difference as is shown by the good
agreement of the curve labelled G2 + G̃2 K2. The latter describes the second correlator where
the deviations due to the correction amplitudes are largest.

We now turn to the A4-singularity of the SWS. For the application of equation (61) we
need the parameters characterizing the A4-singularity,

µ4 = 0.131, κ = 0.243, µ5 = 1.21. (62)
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Figure 7. Critical decay at the A4-singularity of the SWS for qd = 7.0 (dashed), 32.2 (full curve),
39.8 (dotted). The correction amplitudes are Kq = −1.81, −0.04, and 0.77, respectively. The
filled diamonds mark the values at t = 105 and 1012 where the ratios ν(t) are 1.44 and 1.72,
respectively (see text). The inset replots the curves from the full panel in the same linestyle and
shows the first term of equation (63) labelled G1 and the law ln(t/τ )−2/3 labelled A5, both with
an arbitrary timescale.

The rather small value of µ4 generates particularly large coefficients in the expansion of
the critical decay in equation (36) where µ4 appears in the denominators. This feature is
quite the same as mentioned above for the A3-singularities. The asymptotic approximation in
equation (61) yields for the critical decay of the rescaled correlators

φ̂∗
q (t) = 3.54/x − 50.7 ln x/x2 + 12.5K ∗

q/x2 + O(x−3). (63)

We again choose values for q where K ∗
q is negative, almost zero and positive. Figure 7

demonstrates that the factorization is strongly violated. Comparing the solutions φ̂∗
q (t) for

t = 105 we find a ratio defined as in the previous section of ν[7, 32.2, 39.8](105) = 1.439
which is more than 30% off the ratio for the correction amplitudes ν∞ = 2.185. At t = 1012

we find ν[7, 32.2, 39.8](1012) = 1.723, which achieves 20% accuracy. So the critical
decay at the A4-singularity shown in figure 7 is in qualitative accord with equation (63)
with respect to the variation in q . However, due to the small value of µ4, the differences
among the correlators for different q do not decay fast enough to allow for a consistent
determination of t0 for the maximum value in time that could be reached. Numerically we find
ν[7, 32.2, 39.8](10128) = 2.076, which is still 5% off from ν∞, and φ̂∗

q(t) itself deviates from
zero by 5%. This illustrates drastically the enormous stretching at the A4-singularity.

The inset of figure 7 demonstrates that the critical decay φ̂∗
q (t) is qualitatively different

from the leading order 1/ ln t-law for t � 1060. For the A3-singularity in figure 5 it was
still possible to argue that curve G2 is in accord with the decay qualitatively at least for
large times and to attribute deviations for shorter times to the proximity of the A4-singularity.
Figure 7 does not allow for such an interpretation. The curves 1/φ̂∗

q(t) have a slope smaller
than 1/G1 over the complete window in time and imply a slower decay than given by the
leading order in equation (63). If µ4 was zero, the singularity would be of type A5. The
leading order critical decay at such a butterfly singularity is ln(t)−2/3. This law is added in
the inset as a chain line labelled A5. Indeed, it explains the data qualitatively. Hence, the
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shortcomings of the asymptotic expansion at the A4-singularity in the SWS result from the
small value of µ4.

To check if the value for µ4 is exceptionally small for the SWS, the calculation was
repeated for the hard-core Yukawa system as introduced in [16]. We find the even smaller
value µ4 = 0.080. Therefore, the small value of µ4 seems to be typical for systems with
short-ranged attraction.

7. Summary

The asymptotic expansion for large times of the critical decay of correlation functions at higher-
order glass-transition singularities has been elaborated. These decays can be considered as the
analogue of the t−a-law expansion for the correlators at the liquid–glass transition. The latter
as well as the higher-order singularities are obtained as bifurcations of type Al , l � 2. The Al-
singularity and especially the critical decay law at the singularity is characterized by a number
µl . For the A2-singularity of the liquid–glass transition, this characteristic number determines
the so-called exponent parameter λ = 1 − µ2, which specifies the critical exponent a via
λ = �(1−a)2/�(1−2a). Forµ2 = 0 or λ = 1, one gets a = 0 and the asymptotic expansion
in terms of powers t−a becomes invalid. A higher-order singularity An is encountered, defined
by µn > 0 while µl = 0 for l < n.

For an A3-singularity, the critical decay is given by an expansion in inverse powers of
the logarithm of the time, starting with 1/ ln2 t . The convergence of the asymptotic expansion
is the better the larger is µ3. The result for the general models in equations (54a) and (26)
adds probing-variable dependent correction terms to the one-component result. These can be
expressed by terms from the one-component solution and correction amplitudes. The leading
correction amplitude Kq is the same function of the MCT-coupling constants as found earlier
for the logarithmic decay-law expansions [24]. Since the vertex is a smooth function of the
control parameters, these correction amplitudes are smooth functions as well. Therefore, also
for the general case, the range of validity for the asymptotic expansion is determined by the
characteristic parameter µ3. If µ3 is small, the quality of the fit by the asymptotic expansion
is less satisfactory than for larger µ3. Generically, larger µ3 can be obtained by extending
the corresponding glass–glass-transition line deeper into the glassy region and hence having
the A3-singularity further separated from the liquid regime. Thus, the dynamics influenced
by an A3-singularity seen in the liquid regime is either connected to a rather small µ3, or it is
strongly influenced by a crossing of different liquid–glass-transition lines [27].

For µ3 = 0, an A4-singularity is found; the expansion for one-component models in
equations (26)–(28d), (31) becomes invalid and has to be replaced by equations (36) and (37).
The general solution in equation (61) has similar properties as mentioned above for the A3-
singularity. Now it is the characteristic parameter µ4 that determines how satisfactory the
approximation can be. While µ4 = 1 in figure 3 and µ4 = 1.53 in figure 6 allows for
a description in the schematic models considered, the small parameter µ4 ≈ 0.1 in the
microscopic models for systems with short-ranged attraction prevents the application of the
asymptotic formula.

An understanding of the critical decay law is a prerequisite for estimating the range of
validity of the Vogel–Fulcher-type laws which describe the asymptotic limit of the timescale
of the logarithmic decay laws near the higher-order singularities [7]. For the two-component
model analysed above, the asymptotic limits were demonstrated for reasonable windows in
time [25]. For the mentioned colloid models, the small values of the characteristic parameters
µ3 and µ4 together with the manifest violation of the factorization property restrict such laws
to unreasonably long times.
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[8] Sjögren L 1991 Dynamical scaling laws in polymers near the glass transition J. Phys.: Condens. Matter 3

5023–45
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[30] Götze W and Sjögren L 1992 Relaxation processes in supercooled liquids Rep. Prog. Phys. 55 241–376
[31] Feller W 1971 An Introduction to Probability Theory and Its Applications 2nd edn, vol II (New York: Wiley)
[32] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions 7th edn (New York: Dover)
[33] Sperl M 2003 Asymptotic laws near higher-order glass-transition singularities PhD Thesis TU München
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